

Institute of Catastrophe **Risk Management**

Macro-Level Risk Assessment in Megacities

Summary

Following the rapid urban growth in recent years, exposure could be considered as the most dynamic component in risk assessment processes. Hence, estimation of spatiotemporal change of exposure is a critical and intricate task especially for megacities which are complex systems with high loss potentials. The conventional loss estimation approaches require a detailed inventory database of structures. Alternatively, macro-level socio-economic indicators are used, relying on regularly updated data. This study aims to project the natural disaster loss based on the spatiotemporal variability of exposure, assuming a direct relation between losses due to physical damages and business interruption, and the economic productivity of a region.

Prof. Pan Tso-Chien, ED-ICRM Gizem Mestav Sarica, PhD Candidate

Macro-Level Loss Estimation, E(L):

Jaiswal and Wald (2011):

$$E(L) = \sum_{s} r(s) \times Eco.Exposure_{(intensity=s)}$$

$$Eco.Exposure_{(intensity=s)} = \alpha_{region} \times Total \ GDP_{(region, intensity)}$$

Direct Economic Loss Per Capita Wealth $\alpha_{\text{region}} = \frac{1}{Per \ Capita \ GDP}$ $r = \frac{1}{Total \ Economic \ Exposure}$

Hazard Analysis

1) Probabilistic Approach:

Hazard Map for Marmara Region Considering 10% Probability of Exceedance in 50 Years

2) Deterministic Approach:

Intensity Map for Kocaeli Earthquake (Mw 7.8), 1999.08.17

USGS ShakeMap : Kocaeli, Turkey Aug 17, 1999 00:01:39 UTC M 7.6 N40.70 E30.00 Depth: 13.3km ID:19990817000139 Loss Ratio, r(s):

Jaiswal and Wald (2011):

 $r(s) = \phi \left| \frac{1}{R} ln \left(\frac{s}{\theta} \right) \right|$

- Hazard Maps and Hazard Curves can be used for Probabilistic Approach
- Historical Events or Scenario Events can be used for Deterministic Approach

s: shaking intensity (MMI) θ : mean of ln(s) β : standard deviation of ln(s) ϕ : standard normal cumulative distribution function

Contact Us:

Executive Director, ICRM (ExecDir-ICRM@ntu.edu.sg) N1-B1b-07, 50 Nanyang Avenue, Singapore 639798 Tel: +65 6592 1866 Website: http://icrm.ntu.edu.sg

References:

Jaiswal, K., & Wald, D. J. (2013). Estimating economic losses from earthquakes using an empirical approach. Earthquake Spectra, 29(1), 309–324. Kalkan E., Gulkan, P., Yilmaz, N. and Celebi, M. (2009). "Re-Examination of Probabilistic Seismic Hazard in the Marmara Sea Region", Bulletin of Seismological Society of America, 99(4): 2127–2146.

USGS ShakeMap, Retrieved from https://earthquake.usgs.gov/earthquakes/eventpage/usp0009d4z#shakemap

